Abstract

A vertex set X of a graph G is an association set if each component of G−X is a clique, and a dissociation set if each of these cliques has only one or two vertices. We observe some special structures and show that if none of them exists, then the minimum association set problem can be reduced to the minimum weighted dissociation set problem. This yields the first nontrivial approximation algorithm for the association set problem, with approximation ratio 2.5. The reduction is based on a combinatorial study of modular decomposition of graphs free of these special structures. Further, a novel algorithmic use of modular decomposition enables us to implement our algorithm in O(mn+n2) time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.