Abstract
An adaptive output feedback neural network controller is designed, which is capable of rendering affine-in-the-control uncertain multi-input-multi-output nonlinear systems strictly passive with respect to an appropriately defined set. Consequently, a simple output feedback is employed to stabilize the system. The controlled system need not be in normal form or have a well-defined relative degree. Without requiring a zero-state detectability assumption, uniform ultimate boundedness, with respect to an arbitrarily small set, of both the system's state and the output is guaranteed, along with boundedness of all other signals in the closed loop. To effectively avoid possible division by zero, the proposed adaptive controller is of switching type. However, its continuity is guaranteed, thus alleviating drawbacks connected to existence of solutions and chattering phenomena. Simulations illustrate the approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.