Abstract

This opinion piece centers around challenges involved in developing first-principles electrochemical methods. In recent years, theory and computation have become indispensable tools to navigate the parameter space that controls the activity and stability of electrocatalytic materials and electrochemical devices. Viable methods process as input details on materials structure, composition and reaction conditions. Their output includes metrics for stability and activity, phase diagrams, as well as mechanistic insights on reaction mechanisms and pathways. The core challenge, connecting input to output, is a self-consistency problem that couples the electrode potential to variables for the electronic structure of the solid electrode, solvent properties and ion distributions in the electrolyte as well as specific properties of a boundary region in-between. We will discuss a theoretical framework and computational approaches that strive to accomplish this feat.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.