Abstract

Agrawal-Vinay [AV08] and Koiran [Koi12] have recently shown that an exp(ω(√n log2 n)) lower bound for depth four homogeneous circuits computing the permanent with bottom layer of × gates having fanin bounded by √n translates to super-polynomial lower bound for general arithmetic circuits computing the permanent. Motivated by this, we examine the complexity of computing the permanent and determinant via such homogeneous depth four circuits with bounded bottom fanin. We show here that any homogeneous depth four arithmetic circuit with bottom fanin bounded by √n computing the permanent (or the determinant) must be of size exp(Ω(√n)).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.