Abstract

Steroid 5α-reductases (SRD5As), also known as 3-oxo-5α-steroid 4-dehydrogenases, are essential membrane-bound enzymes involved in steroid metabolism. Belonging to the NADPH-dependent oxidoreductase family, 5α-reductases catalyze steroids with 3-oxo-Δ4 structure, such as testosterone or progesterone, to produce their corresponding 3-oxo-5α steroids, which are necessary for a variety of physiological and pathological activities. Despite their significance, SRD5A structures are still in short supply to date. Here we describe a protocol for expression, purification, crystallization, structural determination, and functional analysis of PbSRD5A, the 5α-reductase from Proteobacteria bacterium sharing high sequence identity with human SRD5A1 and SRD5A2 isozymes, which we have recently structurally characterized using a lipidic cubic phase approach. Application of similar methods to other 5α-reductase isozymes will lead to breakthroughs in the understanding of the structure, function, and mechanism of oxidoreductases implicated in steroid metabolism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.