Abstract

Over several years, the evaluation of polytomous attributes in small-sample settings has posed a challenge to the application of cognitive diagnosis models. To enhance classification precision, the support vector machine (SVM) was introduced for estimating polytomous attribution, given its proven feasibility for dichotomous cases. Two simulation studies and an empirical study assessed the impact of various factors on SVM classification performance, including training sample size, attribute structures, guessing/slipping levels, number of attributes, number of attribute levels, and number of items. The results indicated that SVM outperformed the pG-DINA model in classification accuracy under dependent attribute structures and small sample sizes. SVM performance improved with an increased number of items but declined with higher guessing/slipping levels, more attributes, and more attribute levels. Empirical data further validated the application and advantages of SVMs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.