Abstract

The usefulness of applying singular value decomposition (SVD) on triaxial accelerometer data for one-dimensional (1D) convolutional neural network (CNN) based fall and activity recognition is investigated. Three-dimensional reduction methods, namely, SVD, sparse principal component analysis, and kernel principal component analysis, are compared for their effectiveness in extracting useful features for fall and activity recognition. Experiments conducted on three public falls and activities of daily living datasets show that SVD applied to acceleration data coupled with raw acceleration data or acceleration signal magnitude vector exhibited better 1D CNN fall and activity recognition accuracy than those using other principal component analysis based acceleration features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.