Abstract

ABSTRACT We present several machine learning (ML) models developed to efficiently separate stars formed in situ in Milky Way-type galaxies from those that were formed externally and later accreted. These models, which include examples from artificial neural networks, decision trees, and dimensionality reduction techniques, are trained on a sample of disc-like, Milky Way-mass galaxies drawn from the artemis cosmological hydrodynamical zoom-in simulations. We find that the input parameters which provide an optimal performance for these models consist of a combination of stellar positions, kinematics, chemical abundances ([Fe/H] and [α/Fe]), and photometric properties. Models from all categories perform similarly well, with area under the precision–recall curve (PR-AUC) scores of ≃ 0.6. Beyond a galactocentric radius of 5 kpc, models retrieve $\gt 90~{{\ \rm per\ cent}}$ of accreted stars, with a sample purity close to 60 per cent, however the purity can be increased by adjusting the classification threshold. For one model, we also include host galaxy-specific properties in the training, to account for the variability of accretion histories of the hosts, however this does not lead to an improvement in performance. The ML models can identify accreted stars even in regions heavily dominated by the in-situ component (e.g. in the disc), and perform well on an unseen suite of simulations (the auriga simulations). The general applicability bodes well for application of such methods on observational data to identify accreted substructures in the Milky Way without the need to resort to selection cuts for minimizing the contamination from in-situ stars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.