Abstract
Customary approaches in allometric examination include linear regression in geometrical space, as well as, nonlinear regression in the original scale of data. These protocols could not produce consistent results in a circumstance in which the allometric response manifest heterogeneity as the covariate changes. The paradigm of log-nonlinear allometry offers a mechanism for the analysis of heterogeneity in geometric space. However, the use of a logarithmic transformation in allometry is controversial. In this contribution, we present a fuzzy approach aimed to examination of allometric heterogeneity in direct arithmetical space. Offered construct relies on a hybrid procedure integrating crisp cluster analysis and a fuzzy inference system of Mamdani type. Calibration aims depended on an extensive data set composing measurements of eelgrass leaf biomass and their corresponding areas. Results on raw data suggest heterogeneity more clearly manifest in the normalization constant than in the allometric exponent. Nevertheless, differences in normalization constant values among clusters are only slight for data remaining after removal of inconsistent replicates. This suggests heterogeneity produced by intrinsic factors of leaf growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.