Abstract

Modern research in the area of internal combustion engines is focused on searching and investigating the technologies that will improve fuel efficiency and decrease emissions. The application of dual-fuel engines is considered a potential solution to these problems. In the dual-fuel engine, the natural gas-air mixture is ignited by a small amount of diesel fuel directly injected into a combustion chamber. This paper aims to develop a detailed chemistry mechanism for 3D simulation of the combustion process of a dual-fuel engine, providing sufficient convergence with the experimental data. It should be noted that sufficient convergence must also be provided in terms of such parameters as pilot fuel ignition delay and premixed air-fuel mixture flame propagation speed. In the course of the research, the analysis of the most commonly used detailed chemistry mechanisms for calculation of the combustion process and mechanisms’ disadvantages was performed. The results obtained with the use of the detailed mechanisms were compared with the results obtained without using detailed chemistry and with the experimental data as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.