Abstract

This paper presents experimental investigations carried out to study the effect of magnetic field on energy savings in vapour compression system. Application of magnetic field to fluid flow breaks the molecule resulting in a decrease in the viscosity of the fluid. This drop in the viscosity reduces the pumping power required by the compressor as well as enhances the heat transfer rates in the condenser and evaporator due to increased mass flow rates. The net impact is improvement in the COP of the system. Considering the number of refrigerator and air conditioning systems sold globally every year any improvement in the COP could considerably save the energy bills as well as the energy requirement. The main benefit of this investigation is improvement in the system performance improvement in Evaporator capacity or drops in compressor power or increased COP at no cost i.e. no additional input energy. Only cost involved is the initial cost of magnets to be procured for applying suitable magnetic field. The present work was focused on first establishing the effect of magnetic field on the performance of the vapour compression system and then investigating the impact of magnetic-field strength on COP. The magnetic field strength was varied by increasing the number of magnet pairs applied to the liquid line (from condenser outlet to entry of expansion valve). The COP was initially measured without application of magnetic field, and then magnetic field applied to liquid refrigerant was increased by increasing the number of the magnetic pair from 1 to 5. The strength of each magnetic pair was 3000gauss. The result obtained showed improvement in COP of the system under investigation. The COP of the system increased up to13.13% for R134a and 21.87% for R600a refrigerant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.