Abstract

As a low-cost demand-side management application, non-intrusive load monitoring (NILM) offers feedback on appliance-level electricity usage without extra sensors. NILM is defined as disaggregating loads only from aggregate power measurements through analytical tools. Although low-rate NILM tasks have been conducted by unsupervised approaches based on graph signal processing (GSP) concepts, enhancing feature selection can still contribute to performance improvement. Therefore, a novel unsupervised GSP-based NILM approach with power sequence feature (STS-UGSP) is proposed in this paper. First, state transition sequences (STS) are extracted from power readings and featured in clustering and matching, instead of power changes and steady-state power sequences featured in other GSP-based NILM works. When generating graph in clustering, dynamic time warping distances between STSs are calculated for similarity quantification. After clustering, a forward-backward power STS matching algorithm is proposed for searching each STS pair of an operational cycle, utilizing both power and time information. Finally, load disaggregation results are obtained based on STS clustering and matching results. STS-UGSP is validated on three publicly accessible datasets from various regions, generally outperforming four benchmarks in two evaluation metrics. Besides, STS-UGSP estimates closer energy consumption of appliances to the ground truth than benchmarks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.