Abstract

Recent years have seen great progresses in third-generation sequencing. New commercial platforms from Oxford Nanopore Technologies (ONT) can generate ultra-long reads from single-molecule nucleic acid fragments of kilobases up to megabases, exceeding the limitation of short reads and dependency on template amplification suffered by the previous generation of sequencing technologies. Moreover, it can detect epigenetic modifications directly, as well as providing all-around field usage, being pocket-sized and low cost. It has already been applied to yeast research in many aspects, such as complete de novo genome assemblies, the phylogeny of large-brewing yeasts, gene isoform identification, and base modification detection. These applications have delivered novel insights into yeast genomic and transcriptomic analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.