Abstract

BackgroundNormal or inflamed gingival tissues are regarded as a source of mesenchymal stem cells (MSCs) abundant and easily accessible through minimally invasive dental procedures. Due to the proximity of dental resin composites to gingival tissues and to the possible local cytotoxic effect of the eluted components, gingiva-derived MSCs could be used to investigate the biocompatibility of dental biomaterials. PurposeThe present research aimed to isolate (MSCs) from inflamed and normal gingiva, to fully characterize them and to observe their behavior in relation with some commercial resin composite materials and one experimental material. Material and methodsFollowing their isolation, putative MSCs from both gingival sources were grown under the same culture conditions and characterized by immunophenotyping of cell surface antigens by flow-cytometry and transcription factors by immunocytochemical staining. Moreover, stemness gene expression was evaluated by RT-PCR analysis. Multipotent mesenchymal differentiation potential was investigated. Osteogenic and neurogenic differentiated cells were highlighted by immunocytochemical staining, chondrogenic cells by cytochemical staining, and adipocytes by cytochemical staining and spectrophotometry, respectively. Resin composite cytotoxicity was evaluated by cell membrane fluorescent labeling with PKH 26 and MTT assay. The results of PKH labeling were statistically analysed using two-way RM ANOVA with Bonferroni post-tests. For MTT assay, two-way RM ANOVA with Bonferroni post-tests and unpaired t test with Welch’s correction were used. ResultsA similar expression pattern of surface markers was observed. The cells were positive for CD105, CD73, CD90, CD49e, CD29, CD44 and CD166 and negative for CD45, CD34, CD14, CD79, HLA-DR and CD117 indicating a mesenchymal stem cell phenotype. The qRT-PCR analysis revealed a low gene expression for NOG, BMP4 and Oct3/4 and an increased expression for Nanog in both cells lines. Immunocytochemical analysis highlighted a more intense protein expression for Nanog, Oct3/4 and Sox-2 in MSCs derived from normal gingiva than from inflamed gingiva. Multipotent differentiation capacity of MSCs isolated from both sources was highlighted. The tested materials had no hazardous effect on MSCs as the two cell lines developed well onto resin composite substrates. Cell counting revealed some significant differences in the number of PKH-labeled MSCs at some experimental moments. Also, some differences in cell viability were recorded indicating better developmental conditions offered by some of the tested biomaterials. ConclusionsThe experimental resin composite behaved like the most biocompatible commercial material. Inflamed gingiva-derived MSCs retain their stem cell properties and could be used as a valuable cell line for testing dental biomaterials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.