Abstract

ABSTRACT Let k be a field, char k ≠ 2, F = k(x), D a biquaternion division algebra over k, and σ an orthogonal involution on D with nontrivial discriminant. We show that there exists a quadratic form ϕ ∈ I 2(F) such that dim ϕ = 8, [C(ϕ)] = [D], and ϕ does not decompose into a direct sum of two forms similar to two-fold Pfister forms. This implies in particular that the field extension F(D)/F is not excellent. Also we prove that if A is a central simple K-algebra of degree 8 with an orthogonal involution σ, then σ is hyperbolic if and only if σ K(A) is hyperbolic. Finally, let σ be a decomposable orthogonal involution on the algebra M 2 m (K). In the case m ≤ 5 we give another proof of the fact that σ is a Pfister involution. If m ≥ 2 n−2 − 2 and n ≥ 5, we show that q σ ∈ I n (K), where q σ is a quadratic form corresponding to σ. The last statement is founded on a deep result of Orlov et al. (2000) concerning generic splittings of quadratic forms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.