Abstract

All-solid-state lithium-ion batteries are lithium-ion batteries with solid-state electrolytes instead of liquid electrolytes. They are hopeful in solving the safety problems of lithium-ion batteries, once their large capacity and long life are achieved, they will have broad application prospects in the field of electric vehicles and large-scale energy storage. The working potential window of solid electrolytes is wider than that of liquid electrolytes, so high-voltage cathode materials could be used in all-solid-state lithium-ion batteries to get higher energy density and larger capacity by elevating the working voltage of the batteries. The spinel LiNi0.5Mn1.5O4 material, layered Li–Ni–Co–Mn–O cathode materials and lithium-rich cathode materials can be expected to be applied to all-solid-state lithium-ion batteries as cathode materials due to their high-voltage platforms. In this review, the electrochemical properties and structures of spinel LiNi0.5Mn1.5O4 material, layered Li–Ni–Co–Mn–O cathode materials and lithium-rich cathode materials are introduced. More attentions are paid on recent research progress of conductivity and interface stability of these materials, in order to improve their compatibility with solid electrolytes as cathode materials in all-solid-state lithium-ion batteries and fully improve the properties of all-solid-state batteries. Finally, the existing problems of their application in all-solid-state lithium-ion batteries are summarized, the main research directions are put forward and their application prospects in all-solid-state lithium-ion batteries are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.