Abstract

Collisionally pumped soft-x-ray lasers now operate over a wavelength range extending from 4 to 40 nm. With the recent advances in the development of multilayer mirrors and beam splitters in the soft-x-ray regime, we can utilize the unique properties of x-ray lasers to study large, rapidly evolving laser-driven plasmas with high electron densities. Using a neonlike yttrium x-ray laser, which operates at a wavelength of 15.5 nm, we have performed a series of radiography, moiré deflectometry, and interferometry experiments to characterize plasmas relevant to inertial confinement fusion. We describe experiments using a soft-x-ray laser interferometer, operated in the Mach–Zehnder configuration, to study CH plasmas. The two-dimensional density profiles obtained from the interferograms allow us to validate and benchmark our numerical models used to study the physics of laser–plasma interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.