Abstract

Determination of composition and physicochemical parameters of natural products requires dedicated, often laborious and expensive, analytical protocols. Different spectroscopic techniques, in conjunction with chemometrics, seem to have a considerable potential in direct analysis of raw plant material and foods, without any chemical treatment. Fluorescence spectroscopy and three vibrational spectroscopy techniques were applied to determine total polyphenol content, antioxidant activity and macronutrient levels in red- and purple-fleshed potato varieties. Excitation-emission matrix fluorescence, Fourier transform Raman, attenuated total reflection Fourier transform infrared and near-infrared spectra were recorded for the freeze-dried samples. Combining spectral data and the results of reference analyses, partial least squares regression models were constructed for each parameter studied. For polyphenols and antioxidant activity, quantification errors found for validation samples amounted to 3.74-5.04% and 4.75-6.35%, respectively, whereas macronutrient analysis gave errors in the 3.45-4.55%, 3.09-5.30% and 5.10-8.58% ranges for starch, protein and sugar determinations, respectively. The obtained results demonstrate that different spectroscopic techniques in combination with multivariate modeling allow simultaneous determination of various parameters of plant samples based on a single sample spectrum. They can effectively replace commonly used protocols of food product analysis requiring sample dissolving and extraction of the compounds of interest. © 2023 Society of Chemical Industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.