Abstract
Abstract The applicability of the time-temperature superposition principle (TTSP) to wood has been investigated aiming at the prediction of long-term mechanical properties of wood by both horizontally and vertically shifting of short-term stress relaxation data obtained by experiments. The expression of TTSP considering the vertical shift factor (b T ) for wood is proposed the first time. The results showed that: (1) TTSP applied to poplar and the master curve that was obtained from 1 h of tests at 283.2, 303.2, 320.2, 343.2, and 363.2 K in a relative humidity (RH) of 60% could predict the stress relaxation behavior for approximately 42 years at 283.2 K and 60% RH. (2) There was a linear correlation between lga T and T -1, lg a T =6590.40 T -1 -23.64 (R2=0.994), which followed the Arrhenius equation well, while the apparent activation energy was 34.6 kcal mole-1. (3) The b T had a linear relationship with temperature, and the relation was lgb T =0.0013T-0.37 (R2=0.999). (4) The long-term relaxation curve of the long-term verification test had high goodness of fit with the master curve. The results can be interpreted that the TTSP expression considering the b T proposed in this paper is rational.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.