Abstract

Two-point cross-correlations function (CCF) of diffuse acoustic noise approximates the Green’s function, which describes deterministic sound propagation between the two measurement points. Similarity between CCFs and Green’s functions motivates application to acoustic noise interferometry of the techniques that were originally developed for remote sensing using broadband, coherent compact sources. Here, time reversal is applied to CCFs of the ambient and shipping noise measured in 100 meter-deep water in the Straits of Florida. Noise was recorded continuously for about six days at three points near the seafloor by pairs of hydrophones separated by 5.0, 9.8, and 14.8 km. In numerical simulations, a strong focusing occurs in the vicinity of one hydrophone when the Green’s function is back-propagated from the other hydrophone, with the position and strength of the focus being sensitive to density, sound speed, and attenuation coefficient in the bottom. Values of these parameters in the experiment are estimated by optimizing focusing of the back-propagated CCFs. The results are consistent with the values of the seafloor parameters evaluated independently by other means.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.