Abstract

The U and Gamma' models of sensory interactions, successfully applied in olfaction for several years, are tested here using data from published studies on sweetness. The models are subsequently tested on new data obtained in studies of binary mixtures of four sodium sulfamates. The U model allows for the estimation of a global interaction, whereas the Gamma' model allows for the distinction between that which is due to an intrinsic interaction in the mixture itself and that which may be due to the power function exponents in the mixture. The models give satisfactory predictions for observed phenomena of sweet taste suppression, synergism or pure additivity. Additionally, they appear to be more suitable than other models recently applied in taste, particularly the equiratio model. Application of the models to the sulfamate mixtures, reveals additivity for sodium cyclohexylsulfamate (cyclamate)/potassium cyclohexylsulfamate and sodium cyclohexylsulfamate/sodium exo-2-norbornylsulfamate, respectively; whereas for sodium cyclohexylsulfamate/sodium 3-bromophenylsulfamate, the models revealed a slight hypo addition which is simply due to the dissimilarity values of the power function exponents of the components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.