Abstract

Semiconductor detectors can be used to detect neutrons if they are covered by a conversion layer. Some neutrons transfer their kinetic energy to hydrogen via elastic nuclear scattering in the conversion layer, and protons are produced as recoils. These protons enter the sensitive volume of the detector and are detected. In the process of detector development, Monte Carlo computer codes are necessary to simulate the detection process. This paper presents the main features of the S3M code (SRIM Supporting Software Modules) and shows its application potential. Examples are given for the neutron detectors with a conversion layer and for CVD (Chemical Vapor Deposition) diamond detectors for beam-condition monitors at the LHC (Large Hadron Collider). Special attention is paid to the S3M statistical modules that can be of interest also for other application areas like beam transport, accelerators, ion therapy, etc. The results are generated by MCNPX (Monte Carlo N-Particle eXtended) simulations used to optimize the thickness of the HDPE (high density polyethylene) conversion layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.