Abstract
Bending strength of concrete is one of the significant indexes to measure the mechanical properties of concrete. A reliable prediction about the bending strength of concrete is of great importance to maintain the health state and service life of concrete. However, it is difficult to obtain reliable data of large samples due to the high cost, serious destructiveness and complex influencing factors of concrete bending strength test data collection. In view of this, based on the multivariable grey prediction model whose modeling object is small data, we construct a new novel-structured multivariable grey prediction model with various orders for predicting the bending strength of concrete. It defines and optimizes the accumulative orders differentially and introduces a nonlinear correction term to expand the model structure. Then, the bending strength of concrete is modeled using the new model, and its comprehensive error is only 0.035 %, which is much smaller than the conventional NSGM(1,N) and FMGM(1,N) models (5.232 % and 2.624 %, respectively). The findings provide a new modeling method for the prediction of concrete bending strength in areas with large temperature difference, and have significance for enriching and improving the methodologies of grey prediction models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.