Abstract
The coupling of the Computational Fluid Dynamics (CFD) to the Discrete Element Method (DEM) to simulate fluidization is computationally demanding. Although the Linear Spring-Dahspot (LSD) model can help to reduce the CFD-DEM simulation runtime due to its simplicity, its applicability is not reasonable for all sorts of problems. The objective of the present work is to show the application of the LSD model to the CFD-DEM simulation of alumina fluidization. The simulations were carried out with the software ANSYS FLUENT 14.5 and divided into two parts: (1) the reproduction with ANSYS FLUENT of simulations from the literature in which the LSD model and a representative particle approach were used. (2) the simulation of alumina fluidization and validation with experimental data. The results of three main sets of parameters were analysed to include different DEM and CFD time steps, drag models, the representation of particles with both uniform size and particle size distribution, etc. The main conclusion of this work is that the LSD model and the CFD-DEM approach can be used to model the actual behaviour of alumina fluidized beds, but the high simulation runtime and the correct setting of the strategies used to control it are still limiting factors which deserve special attention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.