Abstract

Field Inversion and Machine Learning is an active field of research in Computational Fluid Dynamics (CFD). This approach can be leveraged to obtain a closed-form correction for a given turbulence model to improve the predictions. The fundamental approach is to insert a parameter into the system of RANS equations and determine it in a way such that, for example, a given pressure distribution is better approximated compared to the one obtained with the original set of equations. The goal of this article is twofold. Numerical arguments are presented that these kinds of problems can be severely ill-posed. In the second part, an approach is presented to directly reconstruct the turbulent viscosity field along with an example. The Iteratively Regularized Gauss-Newton Method (IRGNM) is used for a realization. The construction of a problem-adapted norm for a finite volume method is presented. Finally, an outlook is presented on how this approach can be used to possibly modify or improve turbulence models such that not only one, but a larger number of test cases are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.