Abstract

The internal structure of regular and irregular diamond crystals of the Snap Lake deposit of the Slave province (Canada) is studied using the Laue-SR synchrotron method. The crystals under study were classified into regular and irregular diamonds according to IR spectroscopy data. It is shown that irregular diamonds, in contrast to regular, underwent plastic deformation during the postgrowth period. Plastic deformation by slip or spinel-law twinning is observed for diamonds with insignificant nitrogen concentrations. For most studied crystals with high concentrations of platelets (B’ defects), irregular misorientations of local regions of a deformed crystal, such as faults and kinks, are characteristic. The interaction of dislocations formed during plastic deformation, with the dislocations surrounding the platelets, causes destruction of the latter at high P-T parameters typical of the upper mantle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.