Abstract

This work presents the development and implementation of combustion model for DI diesel engines by using the PDF-Chemical Equilibrium combustion model. The key concept of this approach is to predict the thermochemical variables (e.g., temperature, species mass fractions) and then the average scalars of these variables are evaluated by a probability density function (PDF) averaging approach. To realize flame propagation, the reaction time scale is employed to relax the infinitely fast chemistry of chemical equilibrium. The PDF-Eddy Break Up ignition model is adopted in the auto-ignition calculation. With regard to the comparison results, the simulation results are in good agreement with the experimental results in both ignition and combustion modes. In addition, the predicted lift-off length also corresponds to a power-law scaling of Siebers et al.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.