Abstract
Foreign matter (FM) in mixed congee not only reduces the quality of the congee but may also harm consumers. However, the common computer vision methods with poor recognition ability for the homochromatic FM. This study used hyperspectral reflectance images with the pattern recognition model to detect homochromatic FM on the mixed congee surface. First, spectral features corresponding to homochromatic FM and background were extracted from hyperspectral images. Then, based on the optimal spectral preprocessing method, LDA, K-nearest neighbor, backpropagation artificial neural network, and support vector machine (SVM) were used to classify the spectral features. The results revealed that the SVM model input with raw spectra principal components exhibited optimal identification rates of 99.17%. Finally, most of the pixels for homochromatic FM were classified correctly by using the SVM model. To summarized, hyperspectral images combined with pattern recognition are an effective method for recognizing homochromatic FM in mixed congee.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.