Abstract

Soy hull was evaluated as a new material for Cr(VI) removal from aqueous solutions. Cr(VI) removal was associated to a redox mechanism, in which Cr(VI) was reduced to Cr(III) by the biomass. The redox capacity of soy hull was 1.12mmolg−1. A kinetic model that considers the redox reaction between Cr(VI) and the biomass surface was proposed. The maximum sorption capacity was 7.286mgg−1 at 20°C and pH 1.5. Activation parameters and mean free energies suggest that the sorption process follows a mechanism of chemical sorption. Thermodynamic parameters show that Cr(VI) removal was spontaneous. The isosteric heat of sorption indicated that soy hull has an energetically homogeneous surface. XPS spectra showed that chromium bound on the biomass was Cr(III). These results were confirmed by XANES and EXAFS experiments. EPR spectra showed the presence of Cr(V)-soy hull at short contact time and only a signal corresponding to Cr(III)-soy hull at long contact times. Continuous sorption data were fitted to Thomas and modified dose–response models. The bed depth service time (BDST) model was used to scale-up the continuous sorption experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.