Abstract

Dynamic metasurface antennas are planar structures that exhibit remarkable capabilities in controlling electromagnetic wavefronts, advantages that are particularly attractive for microwave imaging. These antennas exhibit strong frequency dispersion and produce rapidly varying radiation patterns. Such behavior presents unique challenges for integration with conventional imaging algorithms. We adapt the range migration algorithm (RMA) for use with dynamic metasurfaces and propose a preprocessing step that ultimately allows for expression of measurements in the spatial frequency domain, from which the fast Fourier transform can efficiently reconstruct the scene. Numerical studies illustrate imaging performance using conventional methods and the adapted RMA, demonstrating that the RMA can reconstruct images with comparable quality in a fraction of the time. The algorithm can be extended to a broad class of complex antennas for application in synthetic aperture radar and MIMO imaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.