Abstract
Fracture processes of trabecular bone have been studied using various approaches over the years. However, reliable methods to analyse fracture at the single trabecula level are limited. In this study, a digital volume correlation (DVC) and a phase-field fracture model are applied and contrasted for human trabecular bone to analyse its failure under global compression at high resolution.A human trabecular bone sample was fractured in situ under synchrotron-based X-ray micro computed tomography (CT). Reconstructed CT data was then used in DVC algorithms to obtain high-resolution displacement fields in the bone at different load steps. A high-resolution specimen-specific structural mesh was discretized from the CT data and used for the phase-field simulation of the fracturing bone.The DVC analysis showed opening mode cracks as well as shear mode cracks. Strains in cracked regions were analysed. The load distribution in the trabecular structure resulted in two completely separated fracture regions in the sample body. A phenomenon that was also captured in the phase-field model. The results encourage us to believe improvements in boundary conditions and material models are worthwhile pursuing. Findings in this study support further development of a phase-field method to analyse fracture in samples with complex morphology, such as trabecular bone, and the capacity of DVC to quantify strains and slowly growing stable fractures during step-wise loading of trabecular bone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.