Abstract

Microbial fuel cell (MFC) has emerged as one of the potential technologies for sustainable bioelectrical energy recovery and reduction of recalcitrant wastes. The MFC performance is greatly influenced by the anode materials which serve as the support for exoelectrogenic bacteria attachment. In this study, oil palm empty fruit bunch (OPEFB) is proposed as an alternative anode material prepared via a direct carbonization process using tube furnace owing to its good conductivity property. The carbonization process was conducted under nitrogen gas flow at 900°C with a constant heating rate of 5°C/min. The anode was prepared by mixing the carbonized OPEFB with polytetrafluoroethylene (PTFE) binder. When used in MFC, the OPEFB-anode generated a maximum current density of 97.30 mA/m 2, which is comparatively higher than that of the conventional carbon cloth anode (76.24 mA/m 2). Our MFC system had also resulted considerable chemical oxygen demand (COD) and 2-chlorophenol reductions of 77% and 75%, respectively. This study could support future research on freely-available OPEFB materials for high performance MFC anode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.