Abstract
As a pharmaceutical pollutant, doxycycline causes contamination when enters into the environment. In this research MIL-53(Fe), and its magnetic hybrid MIL-53(Fe)/Fe3O4 were synthesized and employed for removal of doxycycline from aqueous solutions. The adsorbents were characterized by XRD, SEM, BET, FTIR, EDAX, VSM and TG-DTG technique. The effect of different variables such as DOC concentration, pH, contacting time, and adsorbent dose on the removal efficiency was studied and under optimized conditions the adsorption capacity of 322mgg−1 was obtained. The adsorption process was kinetically fast and the equilibration was attained within 30min. The used adsorbent was easily separated from the solution by applying external magnetic field. The regenerated adsorbent retained most of its initial capacity after six regeneration steps. The effect of ionic strength was studied and it was indicated that removal of doxycycline from salt-containing water with moderate ionic strengths was quite feasible. Langmuir, Freundlich, Tempkin and Dubinin–Redushkevich isotherms were employed to describe the nature of adsorption process. The sorption data was well interpreted by the Longmuir model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.