Abstract

Industrial sources, including iron ore sintering, municipal waste incineration and non-ferrous metal processing have been prominent emitters of dioxins to the environment. With the expanding industrial sectors, many international conventions were established in order to reduce the emission of dioxins in the past two decades. The Stockholm convention, a global monitoring treaty, entered into force in 2004 with the aim to promote development of strategies to reduce or eliminate dioxin emissions. According to the convention, parties are required to develop national inventory databases to report emission levels and develop a national implementation plan (NIP) to reduce further dioxin emissions. In order to understand the trend of dioxin emissions since 1990s this study provides a comparative assessment of dioxin emissions from different industrial sources by deriving emission data from the national inventory databases of Australia, Canada and the 28 European countries (EU-28). According to the data collected, iron and steel production and electricity generation were the highest emitters of dioxins in 2017 for Europe, Canada and Australia, when compared to other stationary industrial sources. The change in the trend of dioxin emissions from the iron and steel industry and the public electricity sector was also assessed. The emission of dioxins during 1990–2017 from both iron and steel production and electricity generation revealed a relative decreasing trend, except for Spain and Italy who showed higher level of emissions from iron and steel production in 2017. Furthermore, comparing emission data for metal production revealed that the blast furnace process was the prominent emitter of dioxins comparing to electric arc furnace process. Further investigation was performed to compare the amount of dioxin emitted from three different fuel types, black coal, brown coal and natural gas, used for electricity generation in Australia. The study showed that dioxin emissions from brown coal were higher than black coal for the last two years, while power production from natural gas emits the lowest amounts of dioxins to the environment.

Highlights

  • Dioxins are unintentionally produced persistent organic pollutants (POPs), emitted in relatively low concentrations that persist in the environment for many years and have the tendency to bioaccumulate in the fatty tissues of living organisms and the environment [1]

  • This study provides a comparative assessment of dioxin emissions from different stationary industrial sources for major countries which include Australia, 28 European (EU-28) countries and Canada

  • According to the 2017 emission data acquired from the respective national pollutant databases (NPI and WebDab), electricity generation was the highest emitter of dioxins in Europe and Australia

Read more

Summary

Introduction

Dioxins are unintentionally produced persistent organic pollutants (POPs), emitted in relatively low concentrations that persist in the environment for many years and have the tendency to bioaccumulate in the fatty tissues of living organisms and the environment [1]. Polychlorinated dibenzo-p- dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are a group of aromatic hydrocarbons, produced largely by various anthropogenic combustion processes in the presence of a chlorine source [2, 3]. In order to achieve a better understanding of dioxin emissions to air from industrial sources, many countries have compiled national air pollution inventories that report the amount of released pollutants per annum, including release of PCDD/Fs emissions [10,11]. Toxicity equivalents (TEQ) are used to report emissions of dioxins in the national inventory reports, using the international toxicity equivalency (I-TEQ) established by the NATO/CCMS Working Group [12, 13]. The national pollutant inventories can serve as a database to assess the state of dioxin emissions on a national level and determine the effect of different international conventions on emission reduction, which have not been conducted before

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.