Abstract

Herein, a multistage induced electric field (IEF) combined with a continuous-flow reactor was utilized to assist the acid hydrolysis of corn, potato, and waxy corn starch for avoiding plate corrosion and heavy metal leakage. It was found that adding IEF stages was beneficial to improve the hydrolysis efficiency. Treating potato, corn, and waxy corn starch via continuous-flow IEF increased the reducing sugar contents up to 78.76 %, 57.86 %, and 66.18 %, respectively. The electrical conductivity of starch grew with the reaction stages, while starch yield demonstrated the opposite trend. Treated starch had higher solubility and gelatinization peak temperature than native starch, with the gelatinization enthalpy showing fluctuations. Meanwhile, the swelling power decreased as the number of IEF stages was increased. Observations of Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy indicated that the treated starch became more ordered, and crystalline regions were destroyed to various degrees with pores forming on particle surfaces. These variations could be attributed to acid hydrolysis and IEF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.