Abstract

In recent years, dietary fibers have attracted a lot of attention as they reduce calories and witness the glycemic index. In this study, wheat bran (WB) and mucilaginous seeds flour (Qodume Shirazi seeds [QSS], wild sage seeds [WSS]) as sources of insoluble and soluble dietary fiber were used for pasta enrichment (50% WB, 45% WB-5% seed flour, and 40% WB-10% seed flour). The cooking properties, microstructural, textural, glycemic index, and sensory properties of pasta samples were evaluated. Fiber ingredients increased moisture content, cooking loss, and ash of pasta samples. In contrast, swelling indexing, optimum cooking time, and water absorption decreased. The samples containing high fiber had a darker appearance with a stiffer structure. Microstructure confirmed the presence of a developed protein matrix in the witness sample. But by substitution of the WB, a heterogeneous and dense network with small and large cells formed. The mucilaginous seed flours (WB-QSS and WB-WSS samples) improved the uniformity of pasta microstructure in comparison with WB sample. WB pasta samples reduced all sensory scores, but adding seed flours had a more noticeable influence on increasing the sensory properties. The presence of QSS and WSS resulted in more starchy and elastic texture. By using mucilaginous seeds flour in the production of high-fiber pasta, the glycemic index decreased more noticeably. This investigation indicates the positive impact of mucilaginous seeds, especially WSS, on pasta sensorial properties, in line with a strong influence on technological characteristics and decreasing the glycemic index. PRACTICAL APPLICATION: This study determined a practical approach to produce high-fiber pasta by applying mucilaginous seeds with the improvement of technological and sensory properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.