Abstract

The occurrence of several incidents in different countries during the seventies and the eighties promoted investigations into the cause of turbine-generator torsional excitation and the effect of the stimulated oscillations on the machine shaft. The best known incidents are the two shaft failures that occurred in the Mohave station in Nevada in 1970 and 1971, which were caused by sub-synchronous resonance (SSR) (Walker et al., 1975; Hall et al., 1976). A major concern associated with fixed series capacitor is the SSR phenomenon which arises as a result of the interaction between the compensated transmission line and turbinegenerator shaft. This results in excessively high oscillatory torque on machine shaft causing their fatigue and damage. These failures were caused by sub-synchronous oscillations due to the SSR between the turbine-generator (T-G) shaft system and the series compensated transmission network. These incidents and others captured the attention of the industry at large and stimulated greater interest in the interaction between power plants and electric systems (IEEE committee report, 1992; IEEE Torsional Issues Working Group, 1997; Anderson et al., 1990; Begamudre, 1997). Torsional interaction involves energy interchange between the turbine-generator and the electric network. Therefore, the analysis of SSR requires the representation of both the electromechanical dynamics of the generating unit and the electromagnetic dynamics of the transmission network. As a result, the dynamic system model used for SSR studies is of a higher order and greater stiffness than the models used for stability studies. Eigenvalue analysis is used in this research. Eigenvalue analysis is performed with the network and the generator modelled by a system of linear simultaneous differential equations. The differential and algebraic equations which describe the dynamic performance of the synchronous machine and the transmission network are, in general, nonlinear. For the purpose of stability analysis, these equations may be linearized by assuming that a disturbance is considered to be small. Small-signal analysis using linear techniques provides valuable information about the inherent dynamic characteristics of the power system and assists in its design (Cross et al., 1982; Parniani & Iravani, 1995). In this research, two innovative methods are proposed to improve the performance of linear optimal control for mitigation of sub-synchronous resonance in power systems. At first, a technique is introduced based on shifting eigenvalues of the state matrix of system to the left

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.