Abstract

The dissociation dynamics of the excited Xe(3) (+) molecular ion through the Pi(12)(u) and Pi(12)(g) conical intersection was interrogated by computational simulation in which no adjustable parameters were used. The electronic ground and excited state potential energy surfaces were generated by the diatomics-in-molecules method, and the Ehrenfest mean-field and Tully surface-hopping approaches treated the nonadiabatic interactions. Reproduction of the experimental spectrum of the symmetric photofragmentation as a function of excitation energy was obtained within the region of interest (2.5-3.75 eV), with the exception of a 0.25 eV width on the red side of the spectral apex. Good agreement was obtained with the experimental dissociated photofragment kinetic energy spectra. It was determined that the greatest contribution to the nonadiabatic coupling between the two states originated from the bending vibrational mode of the molecule in the Sigma(12)(u), ground electronic state before excitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.