Abstract

Various strains of Acetobacter species have been immobilized on hydrous titanium(IV) oxide or hydrous titanium(IV) chelated cellulose and used in the continuous conversion of a dilute aqueous alcoholic solution (in the form of‘charging wort’) into acetic acid (in the form of vinegar) in tower fermenter-type reactors. A strain of Acetobacter species producing extracellular polysaccharide aggregated in the presence of hydrous titanium(IV) oxide thereby enabling higher medium flow rates and an increased acetic acid output to be achieved. A strain of Acetobacter species not producing polysaccharide showed no effect with hydrous titanium(IV) oxide but did produce more acetic acid when a titanium(IV)-cellulose chelate was added to the fermentation, although aggregation was not observed. Mechanisms, which appear to conform to established results, are proposed for the aggregation of both strains of bacteria. Apparently, these water-insoluble titanium compounds can interact with the bacterial cells, increasing their density and thus making them more resistant to ‘wash out’ by increasing the rate at which they sediment in the fermenter. This enables a greater cell mass per unit volume to be achieved which in turn leads to an increase in conversion rate in the reactor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.