Abstract

Biorefining of lignocellulosic biomass to fuels/chemicals has recently gained immense research momentum. Current study reports sequential pretreatment of sunflower stalk (SFS) biomass in a combinatorial regime involving alkali (NaOH) and ionic liquid 1-butyl-3-methyl imidazolium chloride. The pretreatment enhanced the enzymatic digestibility, and resulted in increased sugar yield (163.42 mg/g biomass) as compared to standalone pretreatment using alkali (97.38 mg/g biomass) or ionic liquid (79.6 mg/g biomass). Ultrastructural and morphological analysis (FTIR and SEM) of pretreated biomass showed that the combined ionic liquid and alkali pretreatment causes more drastic alterations in the biomass ultrastructure as compared to alone ionic liquid or alkali pretreatment. Thus, combined pretreatment led to ease of enzymatic saccharification and consequent increased sugar yield, and this observation was corroborated by physicochemical analysis of the pretreated biomass. The pretreated SFS biomass was subjected to consolidated bioprocessing for its direct conversion to bioethanol in a single vessel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.