Abstract

Aggregate production planning (APP) addresses matching supply to forecast demand, with varying customer orders over the intermediate planning horizon. In real-world APP problems, input data and related parameters are commonly imprecise because information is incomplete or unavailable, and the decision maker (DM) must simultaneously consider conflicting objectives. This study develops an interactive possibilistic linear programming (i-PLP) approach to solve multi-product and multi-time period APP problems with multiple imprecise objectives and cost coefficients by triangular possibility distributions in uncertain environments. The imprecise multi-objective APP model designed here seeks to minimise total production costs and changes in work-force level with reference to imprecise demand, cost coefficients, available resources and capacity. Additionally, the proposed i-PLP approach provides a systematic framework that helps the decision-making process to solve fuzzy multi-objective APP problems, enabling a DM to interactively modify the imprecise data and parameters until a set of satisfactory solutions is derived. An industrial case demonstrates the feasibility of applying the proposed approach to a practical multi-objective APP problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.