Abstract
Recently, graph theoretical analysis based on resting-state functional magnetic resonance imaging has provided a means of investigating the complex brain connectome in obsessive-compulsive disorder (OCD) patients. However, these studies have been restricted to spontaneous blood oxygen level-dependent (BOLD) signals with frequency bands between 0.01 and 0.08 Hz, and the parameters from graph theory across multiple frequency bands have seldom been studied. Here, we calculated global metrics (small-worldness, global efficiency and modularity) and nodal metrics (degree centrality, betweenness centrality, nodal clustering coefficient and shortest path) at four different frequency bands (slow-2 (0.199–0.25 Hz), slow-3 (0.074–0.198 Hz), slow-4 (0.027–0.073 Hz) and slow-5 (0.01–0.027 Hz), from 0.01 to 0.25 Hz) in seventy-three OCD patients and ninety healthy controls. The analyses were also calculated in traditional low-frequency bands (0.01–0.08 Hz) for reference. For the global metrics, the OCD patients showed increased small-worldness and modularity only in the slow-3 band. For the local metrics, we observed a frequency-dependent characteristic, with the main significant differences in regions including the right precentral gyrus, occipital region, right anterior cingulum cortex and fusiform cortex. Our results suggested frequency-specific abnormalities of the brain connectome in OCD and the future studies may need to consider different frequency bands when measuring spontaneous activity in the brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.