Abstract

Yttria-doped bismuth (YDB) and gadolinia-doped ceria (GDC) are investigated as a bilayer electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs). LSM-YDB is used as a cathode material in order to improve the poor ionic conduction of LSM and the compatibility with the YDB electrolyte. The performance of the bilayer cell was measured under humidified H2 (3 % H2O) atmosphere and an operating temperature between 500 °C and 650 °C. The polarization resistance and ohmic resistance of the GDC-YDB bilayer cell were 0.189 Ωcm2 and 0.227 Ωcm2 at 650 °C, respectively. The bilayer cell showed 0.527 Wcm−2 in the maximum power density at 650 °C, which is about two times higher than the single-layer cell of 0.21 Wcm−2. The OCV of the bilayer cell was 0.89 V at 650 °C, suggesting that the electronic conduction caused by the reduction of ceria was successfully suppressed by the YDB layer. The introduction of an YDB-GDC bilayer cell with LSM-YDB cathode thus appears to be a promising method for improving the performance of GDC-based SOFCs and reducing operating temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.