Abstract

In real-world project management (PM) decision problems, input data and/or related parameters are frequently imprecise/fuzzy over the planning horizon owing to incomplete or unavailable information, and the decision maker (DM) generally faces a fuzzy multi-objective PM decision problem in uncertain environments. This work focuses on the application of fuzzy sets to solve fuzzy multi-objective PM decision problems. The proposed possibilistic linear programming (PLP) approach attempts to simultaneously minimise total project costs and completion time with reference to direct costs, indirect costs, relevant activities times and costs, and budget constraints. An industrial case illustrates the feasibility of applying the proposed PLP approach to practical PM decisions. The main advantage of the proposed approach is that the DM may adjust the search direction during the solution procedure, until the efficient solution satisfies the DM's preferences and is considered to be the preferred satisfactory solution. In particular, computational methodology developed in this work can easily be extended to any other situations and can handle the realistic PM decision problems with simplified triangular possibility distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.