Abstract
As an effective method to prolong the life of mature field, conformance control in water-injection well has been used wildly. Naturally, effect evaluation of conformance control has attracted great attention because it is an important guideline for the design of later enhanced oil recovery (EOR) plan. Usually, production responses such as excessive water reduction and oil production increment are widely used as the indicators. However, production responses may be unreliable due to the difficulty in determining an effective injection well which is caused by a large number of treated water-injection wells in a well group. Therefore, with the application of fuzzy comprehension evaluation (FCE), five evaluation indexes (injection pressure, injectivity index, slope of hall curve, variation coefficient and homogenization coefficient of injection profile) describe injection responses were selected to establish a new evaluation method in this paper. Based on fuzzy mathematics, FCE reflects the difference of evaluation units. Meanwhile, weights of evaluation indexes were obtained by analytic hierarchy process (AHP), which made the results more convincing. Taking Bai 239 oilfield as an example, the five injection responses indexes were used to assess treatment effect on five water-injection wells by single index evaluation and FCE. The results showed that among the five evaluation indexes mentioned above, the slope of hall curve was the most important factor affected evaluation result. In single index evaluation, opposite results may be produced easily on account of the one-sidedness of single index or human error. Furthermore, we found that effective treatment was a relative concept actually. The result of FCE was consistent with single index evaluation but FCE was more acceptable. This study suggests that FCE could be applied to another field such as water flooding, acidizing and hydraulic fracturing
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.