Abstract
Current image-based analysis methods for monitoring cell confluency and status depend on individual interpretations, which can lead to wide variations in the quality of cell therapeutics. To overcome these limitations, images of mesenchymal stem cells cultured adherently in various types of culture vessels were captured and analyzed using a deep neural network. Among the various deep learning methods, a classification and detection algorithm was selected to verify cell confluency and status. We confirmed that the image classification algorithm demonstrates significant accuracy for both single- and multistack images. Abnormal cells could be detected exclusively in single-stack images, as multistack culture was performed only when abnormal cells were absent in the single-stack culture. This study is the first to analyze cell images based on a deep learning method that directly impacts yield and quality, which are important product parameters in stem cell therapeutics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have