Abstract
To apply CT-based foundational artificial intelligence (AI) and radiomics models for predicting overall survival (OS) for patients with locally advanced non-small cell lung cancer (NSCLC). Data for 449 patients retrospectively treated on the NRG Oncology/Radiation Therapy Oncology Group (RTOG) 0617 clinical trial were analyzed. Foundational AI, radiomics, and clinical features were evaluated using univariate cox regression and correlational analyses to determine independent predictors of survival. Several models were fit using these predictors and model performance was evaluated using nested cross-validation and unseen independent test datasets via area under receiver-operator-characteristic curves, AUCs. For all patients, the combined foundational AI and clinical models achieved AUCs of 0.67 for the Random Forest (RF) model. The combined radiomics and clinical models achieved RF AUCs of 0.66. In the low-dose arm, foundational AI alone achieved AUC of 0.67, while AUC for the ensemble radiomics and clinical models was 0.65 for the support vector machine (SVM). In the high-dose arm, AUC values were 0.67 for combined radiomics and clinical models and 0.66 for the foundational AI model. This study demonstrated encouraging results for application of foundational AI and radiomics models for prediction of outcomes. More research is warranted to understand the value of ensemble models toward improving performance via complementary information. Using foundational AI and radiomics-based models we were able to identify significant signatures of outcomes for NSCLC patients retrospectively treated on a national cooperative group clinical trial. Associated models will be important for application toward prospective patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.