Abstract
Abstract Uncertainty quantification has been recognized by the community as an essential component of best-estimate reactor analysis simulation because it provides a measure by which the credibility of the simulation can be assessed. In a companion paper, a framework for the propagation of nuclear data uncertainties from the multigroup level through lattice physics and core calculations and ultimately to core responses of interest has been developed. The overarching goal of this framework is to automate the propagation, prioritization, mapping, and reduction of uncertainties for reactor analysis core simulation. This paper employs both heavy and light water reactor systems to exemplify the application of this framework. Specifically, the paper is limited to the propagation of the nuclear data starting with the multigroup cross section covariance matrix and down to core responses, e.g., eigenvalue and power distribution, in steady-state core wide calculations. The goal is to demonstrate how the framework employs reduction techniques to compress the uncertainty space into a very small number of active degrees-of-freedom (DOFs), which renders the overall process computationally feasible for day-to-day engineering evaluations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Nuclear Engineering and Radiation Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.