Abstract
The CRISPR/Cas9 system is a technology for genome engineering, which has been applied to indel mutations in genes as well as targeted gene deletion and replacement. Here, we describe paired gRNA deletions along the PIGA locus on the human X chromosome ranging from 17 kb to 2 Mb. We found no compelling linear correlation between deletion size and the deletion efficiency, and there is no substantial impact of topologically associating domains on deletion frequency. Using this precise deletion technique, we have engineered a series of designer deletion cell lines, including one with deletions of two X-chromosomal counterselectable (negative selection) markers, PIGA and HPRT1, and additional cell lines bearing each individual deletion. PIGA encodes a component of the glycosylphosphatidylinositol (GPI) anchor biosynthetic apparatus. The PIGA gene counterselectable marker has unique features, including existing single cell level assays for both function and loss of function of PIGA and the existence of a potent counterselectable agent, proaerolysin, which we use routinely for selection against cells expressing PIGA. These designer cell lines may serve as a general platform with multiple selection markers and may be particularly useful for large scale genome engineering projects such as Genome Project-Write (GP-write).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.