Abstract
The survival of plants under adverse conditions in desert habitats is related to microbial interactions, which can be an innovative strategy for reducing the effects of drought stress in colonized plants. In this study, two endophytic fungi, Trichoderma harzianum, and Fusarium solani, were recovered from the roots of trees in desert regions of Iran. A greenhouse experiment with two fungal agents (control, T. harzianum, F. solani, and T. harzianum + F. solani) and drought (100, 75, and 50% water-holding capacity) was performed on maize (Zea mays L.). Findings indicate that increasing drought levels negatively affect maize plant growth and physiological traits. However, the symbiotic relationship between fungal endophytes and maize roots increased fresh and dry biomass, root/shoot ratio, leaf area, relative water content, and membrane stability index compared with their control counterparts. Maize plants inoculated with endophytic fungi had 52.07, 40, 33.03, and 55.62% higher total phenolic, proline and soluble sugar concentrations, respectively than uninoculated controls. Photosynthetic parameters, including chlorophyll and carotenoid pigments, chlorophyll fluorescence, and gas exchange, were improved in the endophyte-treated plants. However, with increasing drought stress, maize plants colonized with endophytes, electrolyte leakage, and sub-stomatal CO2 concentrations decreased by 28.93% and 47.62%, respectively, compared to endophyte-free plants. When plants were exposed to higher levels of drought stress, endophytes were more effective in improving most parameters, and inoculation of maize seedlings with a combination of endophytes isolated from plants in harsh regions was more effective in increasing their tolerance to drought stress than individual inoculation of each fungus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.